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1. The Obstacle Detection Problem

A machine cannot understand what it cannot represent. In the domain of

autonomous vehicles, a machine cannot avoid obstacles unless it can perceive an

obstacle and correctly interpret its perception. This report presents an approach

for imbuing an autonomous land vehicle with an awareness of obstacles.

While the algorithms presented in this work are applicable to any obstacle

avoidance system, the implementation details are oriented toward the Auto-

nomous Land Vehicle (ALV) project. The project's goal is to create a mobile

robot capable of navigating along roadways and cross-country. The ALV is

currently capable of navigating obstacle-free roads using only visual images. The

next stage in the project is to traverse obstacle laden roads by integrating range

information with the video data.

What is an obstacle? In its most general meaning, an obstacle is a region

that a vehicle cannot or should not traverse. Avoiding regions where a vehicle is

physically capable of traversing but for some reason should not go (such as not

driving the wrong way down a one-way street) would require a level of artificial

intelligence that is beyond the scope of this work.

Excluding places where a vehicle can go but shouldn't, one is left with

regions that can be defined by their shape and material properties. Rocks, street

signs, and steep slopes are all obstacles whose defining characteristic is their

shape. Swamps and ice patches on the other hand may have sufficiently flat sur-

faces for navigation but their material properties make them obstacles for a land
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vehicle that is not specially equipped. Although material properties are impor-

tant for determining navigability, they are not readily measured by current

remote sensing devices on autonomous vehicles, so for now the simplifying

assumption will be made that regions can be adequately categorized by their

geometry alone.

Given the presumption that obstacles will be defined by their shape, the

next issue is how a region's geometry can best be determined by an autonomous

vehicle. Perceiving geometry is essentially a depth perception problem.

Approaches for creating depth (range) images generally fall into three categories:

duplicating human visual ranging methods, contrived lighting methods such as

structured light sensors, and direct, active ranging technologies. [jarvis83b] sur-

veys many of these range finding techniques.

Human beings have a remarkable ability to form accurate depth perceptions

using indirect methods. [haber80] details the wide variety of techniques that the

human visual system employs to determine the distance of objects, including

binocular perspective, texture and shadow clues, occlusion effects, and motion

parallax. Unfortunately, persistent attempts to duplicate these methods using

computer vision systems have resulted in limited successes that are not adequate

for creating accurate range images while driving along a road.

Simple structured light schemes that use single spots of light or a plane of

light to deduce range by triangulation can produce accurate results but are far

too slow for real-time navigation. [le moigne84 and others have proposed using a

grid pattern that covers the entire field of view of a camera to speed up the
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image acquisition process. An alternative approach suggested by [schwartz83

and implemented by [carrihll185] requires taking only two intensity images: one

with a constant illumination filter and one with a linear wedge filter in which the

illumination is very bright on one side of the scene and decreases across the

image. The ratio of the intensities in these two images provides range informa-

tion throughout the entire scene and eliminates the slow process of obtaining and

integrating many plane-of-light images. While grids and filters can form rela-

tively high speed range images for short range indoor uses they have not yet been

demonstrated in outdoor environments. The high variability of ambient lighting

poses one handicap to outdoor structured light sensors. Another, perhaps more

severe, problem is that the desired speed of autonomous vehicles requires range

images that can 'see' at least 30-60 feet in front of the vehicle and preferably

farther than this. It is unlikely that grids or filters could be formed over such

large areas while maintaining adequate depth resolution.

Direct range sensing methods do not provide insight into human visual

understanding but they are superior to indirect methods for creating fast, accu-

rate range images. Radar, ultrasonics, and lasers are the most common active

ranging systems. Unlike passive visual-based techniques they are not usually

impaired by shadows, surface markings, or ambient light (or sound) sources.

Furthermore, the transmitter and receiver in active systems are essentially coax-

ial which eliminates the "missing pieces" problem that structured light and stereo

methods suffer from. There are no parts of a scene that one camera can see but

the other camera or projector cannot. Certain exceptional conditions may
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confuse active ranging systems (for example, atmospheric inversion layers can

create false radar results [rogers79]) but these situations are infrequent and do

not alter the general conclusion that active systems are more robust than current

passive systems.

Software architecture designers for autonomous vehicles stress the neeed for

rapid information processing [payton86, waxman85]. By using active ranging the

entire computationally intensive step of converting a visual image by whatever

means into a range image is eliminated, which allows processing of the range

image to begin as soon as it is acquired.

Ultrasonics have been used for limited obstacle avoidance by mobile

machines in both indoor [brooks85 and outdoor [parodi86 environments. While

ultrasonic range sensors can reliably detect nearby obstacles they have poor direc-

tional resolution. In addition, they have a more severe problem with specular

reflection causing the sensor's waves to be reflected outside of the receiver's view

than do radar or laser sensors. barvis83a] points out that whenever an object's

surface undulations are small in comparison to a sonic beam's wavelength the

detector will not receive sufficient reflection to determine a range unless the angle

of incidence is less than 40 degrees. A 50-60 KHz sonic range scanner will have

wavelengths on the order of 0.5-0.67 cm as compared to a laser scanner's

micrometer wavelengths. Clearly a much larger class of materials will specularly

reflect an ultrasonic wave than will reflect a light wave.

Radar uses a shorter wavelength than sonic range scanners and thus has

better resolution and specularly reflects off of fewer materials. However, even
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very short wavelength radar is approximately three orders of magnitude longer

than laser wavelengths and so has inferior resolution and worse specular proper-

ties. Short wavelength radar components are also generally more expensive than

laser scanner parts.

The features, and deficiencies, of laser range scanners are discussed in more

detail in Section Two. Section Three surveys low-level processing techniques for

range images. The obstacle detection algorithm developed for this report is

presented in Section Four along with an analysis of its sensitivity to perturba-

tions of the range scanner. Implementation details and the results of applying

the algorithm to outdoor range images are given in Section Five. A program for

creating complex, synthetic range images and simulating ALV navigation is

described in Section Six.
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2. Laser Range Scanners

2.1. General Characteristics

There are two types of laser range scanners: time-of-flight (TOF) and phase-

shift. TOF scanners measure how much time a laser beam takes to travel from

the scanner to an object and back. They operate analogously to sonic scanners

except that light travels one million times faster than sound. This creates a

significant practical problem of measuring such small units of time. In order to

resolve ranges to within 3 inches the detector must be able to accurately measure

170 picosecond units of time.

Phase-shift range scanners modulate the power amplitude of a laser beam

and measure the phase difference between the reference wave form and the

returning signal. Phase shifts are generally easier to measure than picosecond

time differences. The main drawback of phase-shift devices is that one is not

measuring an absolute range but rather the true range modulo the scanner's

half-wavelength. The half-wavelength distance is called an "ambiguity interval"

because range measurements are ambiguous by integer increments of the half-

wavelength. For example, if the wavelength is 128 feet (i.e. an ambiguity inter-

val of 64 feet) then a range measurement of 1 foot means that the true range to

the object is 1 foot, or 65 feet, or 129 feet, etc. In practice, this is a serious prob-

lem only for hilly terrain. Note that the wavelength that determines the ambi-

guity interval is the power modulated wave, not the underlying electro-magnetic

light wave. The underlying light has an extremely short wavelength, on the
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order of microns, which gives the scanner its excellent directional resolution.

Older range scanners were seriously hindered by the length of time they

needed to form a complete range image. In 1977, [nitzan77] built a phase-shift

device that took two hours to acquire a 128x128 image. By 1983 [jarvis83a]

reported a TOF scanner that could acquire a noisy 64x64 image in four seconds.

A current state of the art range scanner is built by the Environmental Research

Institute of Michigan (ERIM). It uses a phase-shift design to achieve 0.5 second

acquisition rates for 8 bit 64X256 images.

2.2. The ALV Range Scanner

The processing of range images is affected by the details of the laser scanner

that produces the image. This section describes the ERIM range scanner that is

used by the Autonomous Lahd Vehicle project. More details are available in [lar-

rowe86]. The parameters of the scanner are the result of optimizing many, often

conflicting, features including power requirements, ability to penetrate atmos-

pheric moisture, and safety hazards. The evolution of these features is described

in [zuk83].

A 100 mW laser generating 0.82 um wavelength radiation is at the core of

the range scanner. Modulation of the laser's power source creates a sinusoidal

wave whose frequency (f) is 7.684 MHz. The scanner measures the phase shift

(Ap) of the reflected laser beam. If p is the range to an object and /At is the

time the signal takes to travel the round-trip from the laser to the object and

back then

7



Ap = 2irf At (1)

and

A t = 2P where c is the speed of light (2)
C

Combining equations (1) and (2) yields

Apc (
P 47rf (3)

However, the measured Ap is the true Ap modulo 21r so the largest measurable

value of Ap is less than 27r. Applying the frequency and the upper limit of Ap

to equation (3) results in the largest measurable p having an upper limit of 64

feet. Therefore, 64 feet is the ambiguity interval of the ERIM scanner.

The intensity of the return signal is proportional to both the inverse square

of the range and the reflectivity of the surface that reflects the signal. Most

natural objects have sufficiently similar reflectivities that the intensity could be

used to determine how many ambiguity intervals must be added to obtain the

absolute range. Unfortunately, bare metal parts and specially reflective materials

on street signs and road.stripes render this method unusable for most situations.

Ambient sources of 0.82 pm light do not interfere with the return signal's

measurement because the incoming light is filtered to remove radiation that is

not modulated at the the laser's broadcast frequency of 7.684 MIfz. It is

extremely unlikely that natural sources would be modulated at this frequency

(intentional interference in an adversarial situation is of course possible).

Figure 1 (from [larrowe86]) shows the major components of the scanner.

The nodding mirror determines the plane that the beam will be in for any given



row of the range image. The angle within the plane is controlled by the rotating

polygon mirror. Figure 2 illustrates the spherical coordinate system (0, 4), p)

that naturally describes a range image. The scanner, which is mounted on the

ALV approximately nine feet above the ground, is at the origin (0) of the sys-

tem. The positive Y axis points directly down toward the ground. The positive

Z axis points out in the direction that the ALV is currently travelling. The

length of the line segment OM is the range (p) to the point M

The right triangle Ocb is in the YZ plane. LcOb forms the vertical scan

angle, 4). Each row in a range image is taken from a plane that contains the X

axis and is 0 degrees beneath the Z axis. The rectangle OaMb is in this plane.

LaOM forms the horizontal scan angle, 0. Each column in a range image

corresponds to a particular 0. This geometry results in the following relation-

ships:

X = pCOS(O) (4)

y = psin(0) sin(O) (5)

z = psin(0) cos(O) (6)

The 64 rows of the image are at equally spaced values of 4), and the 256 columns

are at evenly spaced values of 0. An ERIM range image has a 30 degree vertical

field of view in which 4 goes from approximately 6 degrees to 36 degrees. The 80

degree horizontal field of view extends from a 0 of 130 degrees to a 0 of 50

degrees. Although the total magnitudes of the fields of view are fixed, the orien-

tations can be altered either by internal controls in the scanner or by moving the

external platform that the scanner is mounted on. Some practical considerations
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in determining the scanner's field of view are discussed in Appendix C.

The ERIM scanner has a vertical sampling interval of 0.3125 degrees and a

horizontal sampling of 0.46875 degrees. Since the laser beam has an angular

divergence of 0.5 degrees, a scene is densely sampled. This removes the need for

sophisticated interpolation techniques such as those proposed by [boult85 or

[choi85] for sparse range data.

Multiple objects at various ranges may occur within the 0.5 degree solid cone

that forms a single pixel's field of view. The signal that returns to the scanner

will indicate a range that is a complex average of all the ranges encountered

within the cone. For example, if half of a cone intercepts a tree and the other

half travels on to the ground then the returning signal would yield a value that is

somewhere between the distance to the tree and the most distant ground that is

within the cone. This is called the mixed pixel problem. A strategy for avoiding

range errors resulting from mixed pixels is presented in Section 5.

Due to the ambiguity effect, output range values are all between zero and 64

feet. They are quantized into three-inch units so that the final output of the

ERIM scanner is a 64X256 array of 8 bit values ranging from zero to 255.

10



3. Early Processing for Range Images

There have been many proposed approaches for the initial segmentation of

range images. Early work by [duda7g] involved converting a pixel's spherical

coordinates into Cartesian coordinates and then extracting horizontal planes by

histogramming the vertical coordinate of each pixel. Vertical planes were found

by projecting points onto the ground plane and detecting lines with Hough

transforms. Pixels that were not found to be in vertical or horizontal planes were

grouped by similar gray levels. [parvin86] also converted each pixel's spherical

coordinates to Cartesian coordinates but then oay/azx and oy /9z were

estimated at each pixel. Pixels were then grouped into common planes if their

derivatives were sufficiently similar. Parvin reported that applying this pro-

cedure to a 128X 128 range image took 4.5 minutes on a VAX 11-750, much too

long for navigation purposes.

The most common approach for initial segmentation is probably the fitting

of surface normals to each pixel. [hebert821 calculated surface normals and

represented them on a Gaussian sphere so that planes appeared as points (or clus-

ters), cylinders were circles, and other 3-dimensional shapes could be similarly

extracted. [sethi84l projected surface normals onto an image plane and found

equi-magnitude contours. [yang84 did the same but extended the analysis by

also finding equi-orientation contours. [hoffman88a, hoffman86b, jain86] all used

surface normals to classify surfaces as being planar, convex, or concave as the

first step in object recognition algorithms. [1in86] extracted surface patches with

common surface normals to match against possible models in another object

11



recognition scheme.

Higher order polynomials have also been fit to range data. [hall821 charac-

terized surface patches in synthetic range images by their quadric coefficients.

[jain861, however, reported that quadric fits did not work well for real range

images. [sharma8ol compared quadric and planar fits on outdoor range imagery

for extracting road edges and found no advantages to using the slower quadric

method. [olivier86] proposed a least-squares cubic fit and [vemuri84] used

splines under tension.

[inokuchi82] applied a ring operator to range images in conjunction with a

discrete Fourier transform to generate amplitude and phase information for

characterizing pixels.

Outside of projects related to the Autonomous Land Vehicle, little work has

been reported on outdoor range images. The investigations previously mentioned

in this section, with the exception of [hebert82,jain86,sharma86], were all done

using synthetic range images or indoor scenes with very fine gradations. The

range images used by [hoffman86b], for example, had an ambiguity interval of

approximately eight inches and a range resolution of 0.03125 inches. This level of

fine resolution allows the use of more sensitive algorithms than are applicable to

outdoor range data where the ambiguity interval is 64 feet and the resolution is

theoretically three inches but, in practice, usually closer to six inches. The noise

and the noncontinuous nature of outdoor scenes may make methods more com-

plex than planar surface fitting unsuitable for outdoor navigation. In addition,

complex techniques take longer to run which can severely limit the speed at

12



which they can control a moving vehicle.

[sharma86] and [hebert85] have shown that fitting planes can be used for

low-level processing of outdoor range images, but even simpler algorithms may

also be adequate. The fastest of the ALV obstacle detection algorithms, range

differencing, simply subtracts the range image of an actual scene from the

expected range image of a flat plane. While rapid, this technique is not very

robust. Small errors in the orientation of the scanner or a mild slope in the land

will result in false indications of obstacles. We propose using the first derivatives

of the range with respect to the vertical and horizontal scan angles as an

improved, fast obstacle detector. The details of this algorithm, an analysis of its

robustness, and the results using actual outdoor range data are given in the fol-

lowing sections.
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4. The Range Derivative Algorithm for Obstacle Detection

4.1. Central Ideas

When deciding if a surface is an obstacle or not the pertinent feature is the

change in height across the surface. If the change is too rapid then the surface is

unnavigable. A surface normal contains the necessary information on the change

in height but calculating surface normals is computationally intensive. The sur-

face normal at a point is a function of a /lax and ay /9z. Simply calculating

the slope, 8y M/z, would provide significant information concerning a surface's

navigability. However, computing the slope directly from a range image is not

much easier than calculating a surface normal. What can be done very quickly,

though, is finding ap/o and ap/0eb. The following section first shows how

ap/ao can be closely linked to 9y /oz and then how ap/OG can be a measure

of 9y /49x. Using our knowledge of how range derivatives reflect changes in

height across a surface we can then design a rapid obstacle detection algorithm.

The differential of a function y (,p,O) can be written as

dy- 'dO+ ' dp+ 2 -dO (7)ao 09P a9
If 0 is held constant so that the de term is zero then equation (7) applied to

equation (5) gives

Ay = psinOcosoLAo + sinGsin qAp (8)

where the infinitesimal terms dy, do, and dp have been replaced by their finite

A equivalents. In a similar fashion, equation (6) can be differentiated to yield

14
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Az - -p sing sin4' A0 + sing cos$ Ap (9)

Dividing Ay by Az yields

Ay p cos) A0) + sino Ap
Az -p sino A0) + coso Ap

Ap tan)_ +

p A (10)
AP 1 - tano
p AO

If 4) is held constant then equation (7) becomes

A y = sine sin4) Ap - p sino cosO AO (11)
and equation (4) can be differentiated to obtain

Ax = cosO Ap - p sing AO (12)

Dividing equation (11) by equation (12) and regrouping yields

Ap tanG.A, p ta- sino - sin4)
Al 

(13)
A Ap 1 - tang

p AO

Excluding the terms in equations (10) and (13) that we know a priori, we see

that the changes in height in the x and z directions are a function of Ap/p. If

we used some approximation of p we would have a direct relationship between

the easily calculated Ap for a fixed 0 or 4) at a pixel and the slopes at that pixel.

Our experiments with real range data suggest that the following is an adequate

approximation:

pH (14)
sin0sino

where H is the height of the range scanner above the ground. Equation (14)

comes from substituting H for y in equation (5). In hilly terrain this

15



approximation is probably not adequate but it works well for many scenes and it

will be shown in the next section that the derivative algorithm that uses this

approximation is less sensitive to orientation errors than other algorithms of simi-

lar simplicity and speed.

Using equation (14) we can calculate what /Ap would be at each pixel if the

slopes were zero. The difference between this predicted /Ap and the actual /p

found in a range image is a measure of the actual slope. Large differences

between predicted and actual zAp's will be formed by edges of objects as well as

surfaces with steep slopes. Thresholding the absolute values of these differences

yields pixels that are likely to be on obstacles.

One could of course simply threshold the actual Ap's without first subtract-

ing the expected /p's and assume that large Ap's indicate surfaces that have

steep slopes and hence are not navigable. This approach, however, would

severely reduce one's capability to detect obstacles. A perfectly flat surface will

yield a Lp of about 10 if it is 60 feet away but the same surface at a range of 10

feet only has a /Ap of about 0.3. This wide range in Ap's leaves any

thresholding algorithm in a bind. Small threshold levels would find nearby obsta-

cles but more distant flat surfaces would be falsely labelled as obstacles. Con-

versely, larger threshold levels would hide significant obstacles that are near the

range scanner. What is needed is a variable threshold setting. This approach

points out another way of looking at the range derivative algorithm: we are, in

essence, creating a variable threshold that changes across an image based on

expected Ap's. While this simplistic view is a useful description, the derivative

18



algorithm is founded on the mathematical relationships between Ap and a

surface's slopes and is not a randomly chosen heuristic for setting variable

threshold levels.

4.2. Geometrical View of the Algorithm

Equation (10), which showed the relationship between Ap and a surface's

slope, was derived from the differential equations for dy and dz. Figure 3 illus-

trates the following description of how equation (10) can also be derived from the

geometry of a range image in the neighborhood about a pixel. We wish to esti-

mate Ay / Az at some Range[ij ] in an image. Consider projecting

Range[i-lJ] and Range[i+lj] into the YZ plane. Their projections would be

the line segments, respectively, OT and 63 as shown in Figure 3. If a" is a line

segment that is parallel to the Z axis then the tangent of Ldab is equal to

Ay / Az between Range[i-lj] and Range[i+1j]. If AO is small then the

tangent of Ldab is likely to be a reasonable estimate of the slope at Range[i,j].

This tangent can be found in the following manner. As Figure 3 s )v

Ldab = 0  + I where Oa = Orow=i+1

and

A y / Az = tan(Ldab) - tan(7+ 0).

Applying the tangent summation formula to the last equation gives us

tan'y + tanba

1 - tan'tanba

If Lbca were 90 degrees then tan' =-IbcI/lFl (where Ib-cI is the length of

segment 67c). Lbca is actually equal to 90 + AOa/2 but AOb/2 = 0.476

17



degrees so we can reasonably approximate Lbca by 90 degrees which gives us

tan y b (16)

By definition, c is the point on ON where I'j = lob 1. This means that

I Il - Ib1. Since ON and Tb are projections of ranges into the YZ

plane we know that

1041 = Range[i+1,j] sin Pi+l sine (17.1)

and

1ob-I = Range[i-l,j] sine-- Pi-i sin# (17.2)
So,

[-' I = ApsinO whereAp = Pi+l - Pi-1 (17.3)

If we draw a line from the origin to the midpoint of be we will bisect AO$ and

have a right triangle in which Tb is the hypotenuse and bC /2 is the length of

the side that is opposite of the AO / 2 angle. Hence we know that

J - -- sin(AOb/2) (8

But AO/2 is quite small so sin(AL/2) ; AO/2. Applying this approximation

and equation (17.2) to equation (18) yields

16F1 = pi-sinOA0 (19)

Equations (17) and (19) show us that equation (16) can be restated as

tan'y Pi-l sine AO_ Pi-1 AO& (20)
ApsinO Ap

Combining equations (15) and (20) and rearranging terms yields
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Ap tano.+ +1

A_ = pi- AO (21)

Az -AP - tanaPi-I AOb tnb

Comparing equation (21) to equation (10) we see that the two approaches for

relating Ay/Az to Ap yield the same result. A similar correlation could also

be made for Ay/Ax and the projections into the XYplane of Range[i,J+1] and

Range[ij-1].

4.3. Sensitivity to Scanner Perturbations

To know the shape of the world from a range image it is first necessary to

know where the range scanner is and what its orientation is. When an ERIM

range scanner is mounted on an ALV, the scanner's location (especially its height

above the ground) can be found with sufficient accuracy. Its orientation. on the

other hand, has been surprisingly difficult to measure. Martin Marietta, the

integrating contractor for the ALV project, has reported that determining the

roll,'pitch, and yaw of the scanner has been a serious continuing problem. For

this reason it is useful to study the sensitivity of the range derivative algorithm

to errors in scanner orientation and to compare this sensitivity to that of the

range difference and height difference algorithms. For height differencing, one

first converts the range image to Cartesian coordinates and then differences the

expected height (y coordinate) instead of the range.

There are many ways one could measure errors in obstacle detection algo-

rithms. We chose to consider what happens when various algorithms are applied
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to the range image of a flat plane in which the image was taken by a scanner

rotated in some manner. The three algorithms studied were: our range derivative

algorithm (broken down into the 0 derivative and the 4 derivative steps), the

height difference algorithm, and the range difference algorithm. The output of

these algorithms when applied to an image of a flat plane (i.e. a plane parallel to

the XZ plane at a known Y = H ) should be zero at each pixel. If the range

image is taken by a scanner rotated about a particular axis then the results of

applying an algorithm to the perturbed image is a good measure of the

algorithm's sensitivity to that type of rotation. The following rotations were

used to generate perturbed range images:

1) Rotating the scanner about the X axis (i.e. pitch error) by 6x so that

HP = sin0 sin(O+b, )  (22)

2) Rotating the scanner about the Y axis would not alter the range image

because images of flat planes are invariant to this type of rotation (this of

course is not generally true for planes that do not have a constant Y value).

However, any error in the timing or orientation of the polygon mirror that

determines the 0 of the laser beam could lead to 0 being off by some 6y

(which -we will call the yaw error). If the data stream was not properly syn-

chronized one could also believe that the range at some 0 + 6 y was the

range for 0. Yaw error has the form

H
P sin(G+6y) sin (23)
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3) If the scanner is rotated about the Z axis (roll error) by some 6' then

HP = cos6 z sine sin + sin6, cosG (24)

A derivation for equation (24) is presented in Appendix A.

4) The most severe perturbation considered was the combination of roll, fol-

lowed by pitch, followed lastly by yaw, so that

Hcos sin(0+6y) sin(0+8 ) + sin6z coS(0+6Y) (25)

Equations (22-25) were used to produce four different range images in which

H was assumed to be nine feet. The derivative, height, and range algorithms

were applied to each image. When applying algorithms to real outdoor range

images it is necessary to average ranges over a neighborhood to suppress noise.

For these perturbation sensitivity experiments we used the following unnormal-

ized summations at each pixeljij]:

For the 0 derivative,

i+1 i+1
Ap= , Range[kj+1 - y, Range[kj-1] (26)

k=i-1 k=i-I

For the q derivative,

j+1 j+1
Ap- Range[i+l,k] - j, Range[i-,k] (27)

k=j-I k=j-1
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For the height derivative,

i+1
Y = E Range[i,k1sin(OoL___k)sin( row=i)k=j-l

For the range derivative,

j+1
P= F, Range[ik]

Ik =j-1

Table 1 summarizes the results of these experiments. The table contains

two entries for each combination of algorithm and perturbation. The top entry is

the largest absolute value in the entire image and represents a worst-case

scenario. In many scenes, however, the road will be near the center of the

image's horizontal field of view and large errors on the periphery are not critical.

This scenario is represented by the bottom entry which is the largest absolute

value within the central 30 degrees of the image (i.e. 105 < 0 < 85).

Several important trends emerge from Table 1. The 0 derivatives were very

insensitive to all four rotational perturbations. The 0 derivatives were somewhat

more sensitive. When the entire image was considered, the maximum 0 deriva-

tive errors for each rotation were always at least 25% less than the maximum

height difference errors. Within the central 30 degrees of the horizontal field of

view, the maximum qS derivative errors were 45%-75% less than the maximum

height difference errors. The range difference algorithm was very sensitive to all

forms of rotations. In several instances the range difference errors were a full

order of magnitude larger than the derivative errors. These results clearly show
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that the derivative algorithms are more robust under rotational uncertainties

than either the height difference or the range difference algorithms.

For these experiments the true range values without ambiguity intervals

were used. Ambiguity intervals were not simulated so as to avoid mixing the

separate issues of ambiguity interval compensation and sensitivity to scanner per-

turbations.
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5. Implementation of the Range Derivative Algorithm

There are several practical considerations that affect the implementation of a

range derivative algorithm. Chief among these are: choosing an accurate Ap,

reducing noise in an image, avoiding ambiguity interval errors, and inhibiting

errors from mixed pixels. Our approach for these considerations are explained in

this section and the results from applying them to actual range images are

presented.

Equations (26) and (27) give the actual equations used to calculate /Ap for

the 0 and 0 derivatives, respectively. (The term "0) derivative" is used loosely to

mean /Ap calculated for a known /A0 while 0 is held constant. Similarly, "0

derivative" means Ap calculated for a known A 0 while q is constant.) For the 0

derivatives the choice of calculating /Ap across two rows was a compromise

between two conflicting goals. On the one hand, one wants A0) to be as small as

possible so as to insure that the resultant /Ap accurately reflects the slope at the

pixel [1,j]. The smaller A04) is, the less likely it is that a surface will be

sufficiently curved to cause an inaccurate /Ap. On the other hand, decreasing the

size of A0 also decreases the magnitude of the Ap's, which can impair the accu-

racy of the / p measurements. This is especially true for small Ap's due to the

quantization of range measurements into three inch units. The choice of using

/A0 across two columns for the 0 derivatives was made for the same reasons.

The summation of the ranges in a three column neighborhood for the 4

derivative (and a three row neighborhood for the 0 derivative) has been found to

be an effective averaging method. A more sophisticated smoothing operator, the
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Symmetric-Nearest-Neighbor operator ([harwood84]), was also tested on range

images but it did not significantly improve obstacle detection.

The ambiguity interval problem has been approached in two different ways.

For actual range images taken from the ALV we have found that if the vehicle is

not travelling over very hilly territory, simply deleting the upper few rows of the

image removes most of the pixels that are beyond the first ambiguity interval (

64 feet). This does not affect the obstacle detection algorithm significantly

because the laser beam has spread out into a relatively wide cone by the time it

has travelled beyond 50-60 feet, resulting in mixed pixels that are of little use for

accurate obstacle detection. For example, at a range of 55 feet, a laser beam

whose central axis strikes a planar surface at an incident angle of 5 degrees will

form an elliptical footprint with major and minor axes, respectively, of 5.5 feet

and 0.5 feet. (Appendix B derives a general equation for the size of laser beam

footprints on planar surfaces.)

A more time consuming but somewhat more precise approach has been to

examine each column from bottom to top in the image. Whenever adjacent pix-

els go from large values suddenly to very small values it is reasonable to assume

that an ambiguity interval has been reached and that all pixels in the column

beyond this point should have an additional 256 added to their ranges. This

approach was used in the ALV Simulator that is described in the next section.

Figure 4 is a visual picture of Martin Marietta's ALV test track in Denver,

Colorado. The picture was taken by the video camera that is mounted on the

ALV for visual navigation. Figure 5 is a comparison of the fields of view of the
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video camera and the range scanner. It is an outline of how much territory each

device can 'see' on a flat road in a single frame. The camera's view extends

further but is narrower than the range scanner's view. Since the camera's verti-

cal field of view goes above the horizon, its view theoretically extends to infinity.

The range scanner's view begins several feet closer to the vehicle than does the

camera's. This can be clearly seen in Figure 6a: a montage of four range images

in which the top image was taken by the ALV at the same time as Figure 4.

Moving down from the top of the montage, each image was taken five feet

further down the road. The carton in the lower right corner of Figure 4 can be

seen in the top two images of Figure 6a. The cone that is on the right side of the

road about half way up Figure 4 is present in all four range images. The cone is

not very apparent in Figure 6a but it is clearly marked as an obstacle in Figure

6b, which is the thresholded output of the 0 derivative algorithm. Figure 6c is

the thresholded output of the 4, derivative algorithm. The small, dark blob that

is located in the center columns of the top few rows of each image in Figure 6a

and that is marked as an obstacle in Figures 6b and 6c does not correspond to

any actual object in the scenes but rather is spurious data generated by the range

scanner's electronics.

All of the binary images in this section were thresholded manually.

Automatic thresholding was not a topic of research so while the effect of differing

threshold levels was observed, no attempt was made to determine how optimal

levels should be set.
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Figure 6d is the result of two processing steps. First, the binary images 6b

and 6c were ORed together and then isolated obstacle pixels (i.e. pixels that had

no 8-way neighbors marked as obstacles) were deleted.

Figure 7 is another visual image from the Denver test track. It was taken

by the ALV at the same location as the top range image in the montage shown in

Figure 8a. The cone in the lower right corner of Figure 7 can be seen in the top

two range images. The cone is clearly marked in the corresponding thresholded 0

derivative images (Figure 8b) and 0 derivative images (Figure 8c) as well as in

the logical OR of the two derivatives (Figure 8d). Isolated pixels were removed

from Figure 8d.

The spurious dark blob from the scanner's electronics that was present in

the previous set of images is also present in Figures 8a-d. In Figure 8a, the faint

light patch to the left of the dark blob corresponds to the box in Figure 7 on the

left side of the road about 30 feet beyond the cone. The box can be seen in Fig-

ures Sb-d in all four images. The boxes on the right side of the road in Figure 7

are just beyond the detection range of the range scanner.

Location errors due to mixed pixels can be minimized by using pixels that

come from the interior of an obstacle and avoiding pixels at the edges. If one

assumes that obstacle surfaces are usually not concave then the sign of the

derivative at an edge pixel indicates the direction of the center of the obstacle.

For 4 derivatives (as defined in equation (27)), negative Ap's occur at the top

edges of obstacles. Positive Ap's occur at bottom edges. For 0 derivatives (as

defined in equation (26)), left edges have negative Ap's and right edges have
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positive values.

Our implementation of this strategy has two parts. First, if an obstacle

pixel is at location [iJ] in the image, use the sign of the derivative to determine

which direction is likely to be away from the edge and toward the interior. The

direction determines which of the adjacent pixels will be used for associating a

location with the obstacle found at [i.]. If, for example, [iJ+l] is determined to

be toward the obstacle's center then the three-dimensional location of the pixel

[i'I+11 in the range image will be used to place the obstacle that was found at

[ij] in the thresholded image.

Figures 9-11 show the improved positioning of obstacle pixels achieved by

this mixed-pixel minimization algorithm. Figure 9 is the video image of a box

located 25 feet in front of the ALV. A montage of range images in which the box

is 25, 30, 35, and 40 feet from the ALV is given in Figure lOa. The obstacle pix-

els from the combined 0 and 4' derivatives are shown in Figures 10b and 10c. In

Figure lOb, the pixels have been shifted toward the interior by the algorithm

while in Figure lOc they have not been shifted. The projection onto the ground

plane of the obstacle pixels is shown in Figure Ila (with shifting) and in Figure

llb (without shifting). The box's pixels are circled in both of these figures. The

unshifted pixels are clearly more scattered than the shifted pixels. The trapezoid

in Figures Ila and llb is an approximate outline of the scanner's field of view,

similar to the trapezoid in Figure 5. Figures 12a and 12b are the ground projec-

tions of the box at 40 feet with and without shifting, respectively.
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6. The ALV Simulator

Maintaining an ALV is both expensive and time consuming. Furthermore,

changes in weather and the movement of the sun make it very difficult to repro-

duce conditions exactly for testing purposes. A robot arm mounted with a range

scanner and video camera that traverses scale model environments has been used

to provide an efficient and relatively inexpensive testing ground for navigation

programs [dementhon.)]. This section describes a computer simulation program

that goes beyond mechanical modelling and provides a software testbed for auto-

nomous navigation algorithms by simulating the movement of an ALV and con-

structing the video and range images that would be in the ALV's field of view as

the vehicle moves. The program is based on an image flow simulator described in

1sinhaS41.

The simulation process has four major components. First a synthetic world

must be specified and a model created. After this initializing step a loop is begun

consisting of: 1) creating visual and range images based on the ALV's current

location, 2) applying navigation algorithms to determine where the ALV is to

move to next, and 3) calculating and then applying a transformation matrix that

'moves' the ALV to its next location.

The simulator can model spheres, parallelepipeds, planar surfaces, cones, and

cylinders. These objects can be of any dimensions. They can be translated and

rotated in any fashion and may be positioned so that an object is partially or

wholly inside of another object (an important property when constructing com-

plex scenes from these basic building blocks). From the user's perspective, the
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world that the ALV will drive through is specified by a list of objects. Each

object consists of a shape (i.e. sphere, cone, etc.) and parameters describing its

size, location, and orientation. Inside the simulator, each object consists of an

array of surface control points. On a cone, for example, the control points are

the tip of the cone and several equally spaced points on the rim of the cone's

base. The centroid of an object is initially placed at the origin of the coordinate

system and the locations of its surface points are set according to its shape and

size. A transformation matrix is calculated that 'moves' the object from the ori-

gin to its location and orientation in the world. The object is then positioned by

multiplying its control points by this matrix.

After each object has been positioned a visual image is calculated based on a

perspective projection in which the focal point is at the origin of the coordinate

system and the image plane is placed in front of it at z = focal length. The focal

length and the field of view are parameters that the user provides at the start of

the program. These parameters, and all other input to the program, can either

be read from a file or entered interactively in response to prompts.

The visual image is created by breaking an object's surface into triangles in

which the object's control points are the vertices of the triangles. This triangula-

tion obviously decreases the accuracy of the range image for curved surfaces but

any desired level of accuracy can be achieved by increasing the number of control

points.

An intensity value is calculated for the center of each triangle and all points

within the triangle are assumed to have the same intensity. This assumption
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leads to artifacts in the visual image. The simulator's main purpose is to aid

range image research so no attempt has been made to eliminate the gray level

artifacts.

The gray levels can be created with the light source at any position. Surface

reflections are assumed to be Lambertian and all objects have an equal albedo (it

would be a simple extension to add variable albedos). No compensation is made

for lowering intensity due to increased distance from the image plane and the

light source.

The vertices of each triangle are projected into the image plane and pixels

within the projected triangle are all given the same gray level. At first, pixels

were assigned z values based on simple interpolation of the z values of the three

projected vertices. However, linear interpolation between rows of an image was

found to be too inaccurate. Instead, pixels on the edge of the triangle in each

row of the image are projected back out to the object and their actual z values

are calculated. Within a row, linear z interpolation between the two edge pixels

is usually sufficient. Hidden surfaces are removed by comparing z values at each

pixel and choosing the surface that has the minimum z value.

From the visual image and the corresponding z distances we can create an

equirectangular range image whose pixels are spaced at equal linear intervals on

the image plane. However, the ERIM range scanner produces images that are at

equal angular intervals on the image plane so the equirectangular image is resam-

pled to accurately simulate the ALV's range scanning process. Interpolation of

the equirectangular image is done using an intentionally crude algorithm to
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introduce noise into the system (triangulating and digitizing the image of the

objects has already introduced some noise). The final equiangular range image

has all of the properties of an image produced by an ERIM scanner mounted on

an ALV including the same field of view, eight bit range values, and 64 foot

ambiguity intervals.

Once the range image is created, the program's modularity allows the use of

any navigation algorithms to determine where the ALV should move to. In the

program's current configuration the range derivative algorithm is applied to the

equiangular range image and the resultant binary obstacle image is mapped from

spherical coordinates into the Cartesian XZ ground plane. The ground plane

map initially has four types of pixels: 1) traversable terrain, 2) obstacles or unna-

vigable terrain, 3) areas whose traversability is unknown because they are hidden

by an obstacle (i.e. shadow regions), and 4) areas whose traversability is unknown

because they are outside of the field of view of the simulated range sensor. The

path planner will treat the ALV as if it were the size of a single pixel so a boun-

dary the width of the ALV's radius is grown around all obstacle and shadow pix-

els.

Each pixel in a ground plane map corresponds to one square foot and the

entire map covers approximately 65,000 square feet. The vehicle is always at the

center of the current map. In addition to the regions seen in the most recent

range image, the current map also contains information gathered from previous

images and projected into the current coordinate system's ground plane.
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At the start of the simulation the program requests the coordinates of the

ultimate goal for the ALV. A straight line from the current location to this goal

is plotted and a move along it is calculated. The endpoint of the move is passed

to the path planner which tries to find a path through the ground map from the

current location to the endpoint. The path planner was developed by Kambham-

pati and Davis and is described in [kambhampati86]. It uses a hierarchical algo-

rithm based on a quadtree division of the ground map. The planner assumes

that the vehicle can only travel through pixels that are marked as traversable.

[puri87] describes an advanced version of this planner that determines when the

vehicle should try to move to a different vantage point so as to see if shadow

regions are actually traversable. This can significantly improve the vehicle's path

when tall obstacles obscure large regions.

If the planner fails to find a path to the first endpoint a series of heuristics

are used in sequence to select alternate subgoal locations. Each subgoal is passed,

one at a time, to the path planner until one is found that can be reached. If all

of the heuristics are exhausted without a reachable subgoal being found, the pro-

gram notifies the user and gracefully terminates.

Once the endpoint of the next move is found a transformation matrix is cal-

culated that will place the origin of the coordinate system at this new location.

This matrix, when applied to each object's control points, will result in the next

visual and range images being the scene that an ALV would see if it were driven

to the endpoint. The matrix is fashioned so that the vehicle will be facing the

ultimate goal location (other constraints on what direction the vehicle should be
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facing or how long each move should be are adjustable parameters in the pro-

gram). If the move's endpoint is the same as the goal location the program ter-

minates. Otherwise the transformation matrix is applied, the new visual image is

found and the program begins another pass at moving the simulated vehicle

toward its goal.

A typical trip by the ALV through synthesized terrain is illustrated in Fig-

ures 13-21. The visual images at the start of each move are shown in Figure 13.

The equirectangular range image at the start of the trip is given in Figure 14. It

corresponds to the visual image labelled Time 0 in Figure 13. A montage of the

equiangular range images is presented in Figure 15. The four scenes in the mon-

tage, in order from top to bottom, are from Times 0, 1, 2, and 3. Figure 16

shows the obstacle pixels found in each equiangular range image. These pixels

are mapped into the ground plane in Figures 18-21. The solid black regions in

the ground maps are obstacles. White areas are navigable terrain. Horizontal

stripes are shadow regions while vertical stripes delimit the grown boundaries sur-

rounding obstacles and shadows. Regions outside of the range scanner's field of

view are gray. A key to these markings is provided in Figure 17.
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7. Conclusions

We have shown how range derivatives can be used for fast, reliable obstacle

detection by an autonomous vehicle. The range derivative algorithm works well

for relatively flat, on-road scenes. It has significantly better performance, when

the range scanner is perturbed, than other fast obstacle detection methods. For

hilly terrain it will be necessary to use surface normals or the full LAp/p term in

place of the simpler Ap approximation that was used in this report.

The ALV simulator is a useful testbed for developing range image and navi-

gation algorithms. By freeing researchers from the costly and time-consuming

requirements of an actual vehicle it can accelerate the algorithm development

process. It would be useful if the simulator was extended to improve its ability

to model rough, outdoor terrain realistically.
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APPENDIX A

Range Equation with Roll Error

The derivation of equation (24) is based on three rotations of the scanner's

coordinate system. The rotations begin with the Cartesian framework that is

shown in Figure 2. We first wish to rotate about the Z axis by 6z. The relation-

ships between the unit vectors in the new coordinate system and the old unit vec-

tors are

- coS6Z + ^ sin6z

y = -x sinb, + 4 cos6Z

ZI= Z

The range scanner scans downward by an angle 0 which is equivalent to rotating

the coordinate system about the XI axis. Note that this is a left-handed rotation

so

Y2 = y 1 coso - iZsine

Z2 - y I sine + 1 coso

The horizontal scan angle 0 is now the equivalent of rotating about the Y2 axis

by 0 degrees. This is also a left-handed rotation which yields

2 sinG + '2 cos0

Y 3 Y2

3 - 2 cosO - i 2 sin0
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Notice that the direction of the range at a pixel with the spherical coordinates

(p, 0, 0) is now 13. Therefore, the cosine of the angle between i 3 and is

equal to H/p where H is the height of the scanner above the ground (recall that

9 is perpendicular to the plane defined in the unperturbed coordinate system by

Y = H). Therefore,

HY"'3 =
p

Expanding i3 yields

i3 = 2sinO + 1- cosO

[Y I sine + z jcoso] sinG + z 1 cosO

= [(-i sin6, + cos6,) sino + 2 coso] sinO

+ (i cos6, + sin6,] cos9

Taking the dot product of the last equation with results in all of the 1 and 2

terms dropping out and leaving,

H = cos6~ sin 1sinO + sin6, cosO

p
By a simple rearrangement of terms this equation becomes equation (24).
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APPENDIX B

Caculating Laser Beam Footprints on Planar Surfaces

For any planar surface that is large enough to intersect all of a range

scanner's laser beam, the resultant footprint will be an ellipse. The size of the

footprint is of interest because it is a good measure of how mixed the resulting

pixel will be. [larrowe86] gives the equations for calculating the axes of the

ellipse when the surface is a flat plane (i.e. a plane parallel to the XZ axis). The

parameters of Larrowe's equations are the height of the plane (i.e. its constant y

value), 0, 0, and the angular width of the laser beam. The following derivation

leads to a generalized set of equations for the axes of the ellipse formed by a sur-

face at any orientation. The equations' parameters are:

p = range along the laser beam's central axis (the beam is a cone)

= angle between the central axis and the planar surface

6 = half the angular width of the cone

M major axis of the ellipse

m = minor axis of the ellipse

Figure 22 illustrates the cross-section of the laser beaims cone and the planar

surface that cuts through the cone. In the drawing, M = I -Ic = I-dI + Id!!

and p adI - b lI+-I-bd[. From the geometry of the figure we can find the

value of cj in the following manner:
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bCj1 =tanb s0 T Ibc-I
I I tanb

1c =tany so IbdI=
I 6d I tan'y

p = ITI + i11 = I6-I +
tanb5 tanpy

Therefore,

I-_ - ptan6tan-y
tanb + tany

The first section of M can now be written as

i.I d I - ptan6tany

sin-y sin-y (tanS + tan'y)

ptan6 - p sinb

COSy (tanS + tan-1) sin(-y+b)

The other piece of M, Idf I, can be found in the same way:

- tanj so I if I Ietan-y

-1 -- tanb so I TfI Itanb

Combining the two equations for Ief I and rearranging terms yields

Ial = jej tan

tanS

Substituting p + I eI for Ia'e in the last equation gives

e. _ p tanS
tan-y- tan6
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This allows us to solve for I W7 I:

W7 IdeI - ptan6 __ psin6
cos'Y cos'y (tan'y - tanb) sin(,y-b)

Adding together the equations for IdI and d- I we get M:

M -- psin~( sin(-y+b) + sin(-r-5)

As in any ellipse, the major and minor axes are related to the eccentricity (e) by

M - M [1- e21]/2

In the case of a plane cutting through a cone we know that the eccentricity of

the resulting ellipse will be e = Cos" (see [thomas72] for details). So,

M M 1 COJ2~ 1/2
M0cos
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APPENDIX C

Range Scanner Calibration

The vertical field of view of an ERIM range scanner is fixed at 30 degrees.

The minimum 0, however, is dependent on how the scanner is mounted on the

ALV. At the Martin Marietta test track, 4 min is often not measured at the time

images are produced. Calibrating 4 min for the range images used in this report

was done in the following manner.

The calibration problem has four basic constraints:

1) The scanner's hardware provides very accurate increments of 0 between rows

so if one assumes that q0 at row i is x then 0 at row j will be x + (j-i)

30/63.

2) In each collection of range images there is at least one image taken of the test

track in which the center of the image contains a fiat plane (i.e. y = H) with no

hills or obstacles.

3) H - p sin sinS

4) 0 is assumed to be go degrees in the center of the image.

If the scanner is properly adjusted then the last assumption is exactly correct.

Since the calibration is based on sin0, even a 5 degree error in 0 will negligibly

affect the results.

These constraints reduce the calibration problem to finding the best

(H, Omin) pair that fits the p's in the central column of the flat plane range
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image. Unfortunately, Martin Marietta also did not measure the height of the

scanner so H must be treated as an unknown.

Each combination of H ranging from 8 feet 6 inches to 9 feet 6 inches in one

inch increments and 4 min ranging from 0 degrees to 25 degrees in .25 degree

increments is used to generate expected p's for pixels along the central column of

the flat plane range image. At each pixel the expected p is subtracted from the

actual p and then the difference is squared. The sum of the squares is used as a

measure of how well the (H, Omin) pair fits the scanner's actual height and Omin .

The best fit for the images used in this report was (9 feet, 6 degrees).
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Figure 1: The ERIM Range Scanner (from [Iarrowe86])
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Figure 2: Range Image Coordinate System
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Figure 3: The Geometry of the Range Derivative Algorithm
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Figure 6a: First Montage of' Range Images
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Figure 7: Video Image of Road Segment with Cone
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Figure 8a: Second Mlontage or Range lma~es
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Figure 9: Video Image of Road Segment wvith Box
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Figure lob: Obstacle Pixels of Box Segment Montage
With Mixed Pixel Minimization
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Figure lOc: Obstacle Pixels of Box Segment Montage

Without Mixed Pixel Minimization
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Figure 11a: Projection into Ground Plane of Obstacle Pixels
With Mixed Pixel Minimization: Box at 25 feet
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Figure lb: Projection into Ground Plane of Obstacle Pixels
Without Mixed Pixel Minimization: Box at 25 feet
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Figure 12a: Projection into Ground Plane of Obstacle Pixels
With Mixed Pixel Minimization: Box at 40 feet
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Figure 12b: Projection into Ground Plane of Obstacle Pixels
Without Mixed Pixel Minimization: Box at 40 feet
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Figure 13: Visual Images from ALV Simulator



Figure 14: Equirectangular Range Image from Time 0 of Simulator
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Figure 15: Montage of Equiangular Range Images fromn ALV Simulator-
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Figure 16: Montage of Thresholiec Obstacles
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Figure 17: Key for Ground Plane Maps
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Figure 19: Ground Plane Map from Time 1



Figure 20: Ground Plane Map from Time 2
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Figure 22: Cross Section of a Laser Beam Intersected by a Plane



Table 1: Comparison of Obstacle Detection Algorithms
for Sensitivity to Scanner Perturbations

Perturbation Magnitude of Errors (1)

Theta Phi Height Range
Derivative Derivative Difference Difference
Algorithm Algorithm Algorithm Algorithm

3 degrees in 0.8 (2) 1.5 5.1 24.7
horizontal angle 0.3 (3) 0.4 1.6 6.4

3 degrees in 3.7 13.6 21.2 103.3
roll angle 1.1 2.8 6.0 23.1

3 degrees in 1.1 17.3 25.4 123.7
vertical angle 0.3 13.8 25.4 98.5

3 degrees in 9.7 53.5 72.2 351.4
each angle 2.6 21.3 38.9 150.7

(1) The absolute values of the expected Ap (or p or y) from an unperturbed
scanner minus the Ap (or p or y) from a scanner that has been rotated in
the manner listed in the 'Perturbation' column.

(2) Maximum error in image.

(3) Maximum error in central 30 degrees of image.
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